On Search, Ranking, and Matchmaking in Information Networks

Sergei Maslov
Brookhaven National Laboratory
Information networks: WWW and beyond

- First part of my talk: \(10^{10}\) webpages in the world: need to search and rank!!

- Second part: opinion networks
 - WWW can be thought of as a network of opinions (hyperlinks – positive votes)
 - Our choices and opinions on products, services and each other – a much larger opinion network!
 - Very incomplete (sparse) \(\rightarrow\) one could use intelligent “matchmaking” to match users to new products or each other
Assign an “importance factor” G_i to every webpage.

Given a keyword (say “jaguar”) find all the pages that have it in their text and display them in the order of descending G_i.

One solution still used in scientific publishing is $G_i = K_{in}(i)$ (the number of incoming links), but:

- Too democratic: It doesn’t take into account the importance of nodes sending links
- Easy to trick and artificially boost the ranking
How Google works

- Google’s recipe (circa 1998) is to simulate the behavior of many virtual “random surfers”
- PageRank: $G_i \sim$ the number of virtual hits the page gets. It is also \sim the steady state number of random surfers at a given page
- Popular pages send more surfers your way \rightarrow PageRank $\sim K_{in}$ weighted by the popularity of a source of each hyperlink
- Surfers get bored following links \rightarrow with probability $\alpha = 0.15$ at any timestep a surfer jumps to a randomly selected page (not following any hyperlinks)
- Last rule also solves the ergodicity problem
Mathematics of the Google

- To calculate the PageRank Google solves a self-consistent Eq.:
 \[G_i \sim \sum_{j \rightarrow i} G_j / K_{out}(j) \]

- To account for random jumps:
 \[G_i = (1-\alpha) \sum_{j \rightarrow i} G_j / K_{out}(j) + \alpha \sum_j G_j / N \]
 \[= (1-\alpha) \sum_{j \rightarrow i} G_j / K_{out}(j) + \alpha \]
 (uses normalization: \(\langle G \rangle = \sum_j G_j / N = 1 \))

- Pages with \(K_{out}(j) = 0 \) are removed
Matrix formulation

- Equivalent to finding the principal eigenvector (with $\lambda=1$) of the matrix $(1-\alpha) \mathbf{T} + \alpha \mathbf{U}$, where $T_{ij} = 1/K_{out}(j)$ if $j \rightarrow i$ and 0 otherwise, and $U_{ij} = 1/N$

- Could be easily solved iteratively by starting with $G_i^{(0)}=1$ and repeating $G^{(n+1)} = (1-\alpha) \mathbf{T} G^{(n)} + \alpha$

- All $G_i > \alpha$
How Communities in the WWW influence the Google ranking

H. Xie, K.-K. Yan, SM, cond-mat/0409087
How do WWW communities influence their average G_i?

- Pages in a web-community preferentially link to each other. Examples:
 - Pages from the same organization (e.g. SFI)
 - Pages devoted to a common topic (e.g. physics)
 - Pages in the same geographical location (e.g. Santa Fe)

- Naïve argument: communities tend to “trap” random surfers to spend more time inside them → they should increase the Google ranking of individual webpages in the community
Test of a naïve argument

- Naïve argument is **wrong**!
- The effect could go **either way**
- \(G_c \) – average Google rank of pages in the community; \(G_w = 1 \) – in the outside world
- \(E_{cw} G_c / \langle K_{out} \rangle_c \) – current from C to W
- It must be equal to:
 - \(E_{wc} G_w / \langle K_{out} \rangle_w \) – current from W to C

\[
\frac{G_c}{G_w} = \frac{E_{wc}}{E_{cw}} \cdot \frac{\langle K_{out} \rangle_c}{\langle K_{out} \rangle_w}
\]

- Thus \(G_c \) depends on the ratio between \(E_{cw} \) and \(E_{wc} \) – the number of edges (hyperlinks) between the community and the world
Balancing currents for nonzero α

- $J_{cw} = (1 - \alpha) \frac{E_{cw}}{N_c} \frac{G_c}{<K_{out}>_c} + \alpha \frac{G_c}{<K_{out}>_c} N_c$
 - current from C to W

- It must be equal to:
 $J_{cw} = (1 - \alpha) \frac{E_{wc}}{N_w} \frac{G_w}{<K_{out}>} + \alpha \frac{G_w}{<K_{out}>} N_w (N_c/N_w)$
 - current from W to C

\[
G_c = \frac{(1 - \alpha) \frac{E_{wc}}{N_c} \frac{E_{cw}}{<K_{out}>_c} + \alpha}{(1 - \alpha) \frac{E_{cw}}{N_c} \frac{E_{cw}}{<K_{out}>_c} + \alpha} = \frac{(1 - \alpha) \frac{E_{wc}}{E_{cw}} + \alpha}{(1 - \alpha) \frac{E_{cw}}{E_{cw}} + \alpha}
\]
What are the consequences?

\[G_c = \frac{(1-\alpha) \frac{E_{wc}}{E^{(random)}_{wc}} + \alpha}{(1-\alpha) \frac{E_{cw}}{E^{(random)}_{cw}} + \alpha} \]

- For very isolated communities \((E_{cw}/E^{(r)}_{cw} < \alpha\) and \(E_{wc}/E^{(r)}_{wc} < \alpha\)) one has \(G_c = 1\). Their Google rank is decoupled from the outside world!

- Overall range: \(\alpha < G_c < 1/\alpha\)
WWW - the empirical data

- We have data for ~10 US universities (+ all UK and Australian Universities)
- Looked closely at Long Island University
 - 4 large campuses
 - 45,000 webpages and 160,000 hyperlinks
 - After removing $K_{out}=0$ left with ~15,000 webpages and 90,000 links
- Can do a mini-Google PageRank on this set alone
LIU communities

- LI University has 4 campuses. We looked at one of them (CWP Campus)

 - $E_{cw} = 1393; \ E_{cw}^{(r)} \approx 16,000; \ E_{cw}/E_{cw}^{(r)} \sim 0.09 < \alpha = 0.15$

 - $E_{wc} = 336; \ E_{wc}^{(r)} \approx 12,500; \ E_{wc}/E_{wc}^{(r)} \sim 0.03 < \alpha = 0.15$

- This community should be decoupled from the outside world
Ratios are renormalized to $E_{cw}/E^{(r)}_{cw} \sim 0.01$ and $E_{wc}/E^{(r)}_{wc} \sim 0.005$.
But: the community effect could be also strong!
\(\alpha = 0.001 \)

Abnormally high PageRank
Top PageRank LIU websites for $\alpha=0.001$ don’t make sense

- #1 www.cwpost.liu.edu/cwis/cwp/edu/edleader/higher_ed/hear.html'
- #5 …/higher_ed/index.html
- #9 …/higher_ed/courses.html
$G_c(\alpha)$

α

10^{-2}

10^{-1}

10^0

10^1

10^2

10^3
Collaborators and postdoc info:

- Collaborators:
 - Huafeng Xie – City University of NY
 - Koon-Kiu Yan - Stony Brook U.

- Looking for a postdoc to work in my group at Brookhaven National Laboratory in New York starting Fall/Winter 2005 or even 2006

- Topics:
 - Large-scale properties of (mostly) bionetworks (partially supported by a NIH/NSF grant with Ariadne Genomics)
 - Internet/Google/Opinion networks

- E-mail CV and 3 letters of recommendation to: maslov@bnl.gov; See www.cmth.bnl.gov/~maslov
Part 2:

Opinion networks

Predicting customers’ tastes from their opinions on products

- Each of us has **personal tastes**
- Information about them is contained in our **opinions** on products
- **Matchmaking**: opinions of customers with tastes **similar to mine** could be used to forecast my opinions on untested products
- Internet allows to do it on **large scale** (see amazon.com and many others)
Opinion networks

Opinions of movie-goers on movies

WWW

Webpages

Other webpages

Customers

Movies

1
2
3
4

opinion
Storing opinions

Network of opinions

Matrix of opinions Ω_{IJ}
Using correlations to reconstruct customer’s tastes

- Similar opinions ⇒ similar tastes
- Simplest model:
 - Movie-goers ⇒ M-dimensional vector of tastes T_i
 - Movies ⇒ M-dimensional vector of features F_j
 - Opinions ⇒ scalar product: $\Omega_{ij} = T_i \cdot F_j$
Loop correlation

- Predictive power $1/M^{(L-1)/2}$
- One needs many loops to best reconstruct unknown opinions

$L=5$ known opinions:

Predictive power of an unknown opinion is $1/M^2$
Main parameter: density of edges

- The larger is the density of edges p the easier is the prediction.
- At $p_1 \approx 1/N$ ($N=N_{\text{customers}}+N_{\text{movies}}$), macroscopic prediction becomes possible. Nodes are connected but vectors T_i and F_j are not fixed: ordinary percolation threshold.
- At $p_2 \approx 2M/N > p_1$ all tastes and features (T_i and F_j) can be uniquely reconstructed: rigidity percolation threshold.
Real empirical data (EachMovie dataset) on opinions of customers on movies: 5-star ratings of 1600 movies by 73000 users 1.6 million opinions!
Spectral properties of Ω

- For $M < N$ the matrix Ω_{ij} has $N-M$ zero eigenvalues and M positive ones: $\Omega = R \cdot R^+$.

- Using SVD one can “diagonalize” $R = U \cdot D \cdot V^+$ such that matrices V and U are orthogonal $V^+ \cdot V = 1$, $U \cdot U^+ = 1$, and D is diagonal. Then $\Omega = U \cdot D^2 \cdot U^+$.

- The amount of information contained in Ω: $NM-M(M-1)/2 << N(N-1)/2$ - the # of off-diagonal elements.
Recursive algorithm for the prediction of unknown opinions

1. Start with Ω_0 where all unknown elements are filled with $<\Omega>$ (zero in our case)

2. Diagonalize and keep only M largest eigenvalues and eigenvectors

3. In the resulting truncated matrix Ω'_0 replace all known elements with their exact values and go to step 1
Convergence of the algorithm

- Above p_2 the algorithm exponentially converges to the exact values of unknown elements.

- The rate of convergence scales as $(p-p_2)^2$.

![Graph showing error vs. number of iterations for different values of p. The graph includes a logarithmic scale for both axes, showing a clear exponential decrease in error as the number of iterations increases.]
Reality check: sources of errors

- Customers are not rational!
 \[\Omega_{ij} = r_i \cdot b_j + \Omega_{ij} \text{ (idiosyncrasy)} \]

- Opinions are delivered to the matchmaker through a narrow channel:
 - Binary channel \(S_{ij} = \text{sign}(\Omega_{ij}) : 1 \text{ or } 0 \) (liked or not)
 - Experience rated on a scale 1 to 5 or 1 to 10 at best

- If number of edges \(K \), and size \(N \) are large, while \(M \) is small these errors could be reduced
How to determine M?

- In real systems M is not fixed: there are always finer and finer details of tastes.
- Given the number of known opinions K, one should choose $M_{\text{eff}} \leq K/(N_{\text{readers}} + N_{\text{books}})$ so that systems are below the second transition $p_2 \Rightarrow$ tastes should be determined hierarchically.
Avoid overfitting

- Divide known votes into training and test sets
- Select M_{eff} so that to avoid overfitting !!!
Knowledge networks in biology

- Interacting biomolecules: key and lock principle
 \[k^{(1)} \rightarrow l^{(1)} \quad \text{and} \quad k^{(2)} \square l^{(2)} \]

- Matrix of interactions (binding energies) \(\Omega_{ij} = k_i \cdot l_j + l_i \cdot k_j \)

- Matchmaker (bioinformatics researcher) tries to guess yet unknown interactions based on the pattern of known ones

- Many experiments measure \(S_{ij} = \theta(\Omega_{ij} - \Omega_{th}) \)
Collaborators:

- Yi-Cheng Zhang – U. of Fribourg
- Marcel Blattner – U. of Fribourg
Postdoc position

- Looking for a postdoc to work in my group at Brookhaven National Laboratory in New York starting Fall 2005
- Topic - large-scale properties of (mostly) bionetworks (partially supported by a NIH/NSF grant with Ariadne Genomics)
- E-mail CV and 3 letters of recommendation to: maslov@bnl.gov
- See www.cmth.bnl.gov/~maslov
THE END
Information networks

Why the research into properties of complex networks is so active lately?

Biology: lots of large-scale experimental data is generated in the last 10 years: most of it is on the level of networks.

The explosive growth of information networks (WWW and the Internet) is what fuels it all (directly or indirectly)!
\[E_{cc} + E_{wc} = N_c \langle K_{in} \rangle_c \]

\[E_{cc} + E_{cw} = N_c \langle K_{out} \rangle_c \]

\[
\frac{G_c}{G_w} = \left(\frac{\langle K_{in} \rangle_c N_c - E_{cc}}{\langle K_{out} \rangle_c N_c - E_{cc}} \right) \cdot \frac{\langle K_{out} \rangle_c}{\langle K_{out} \rangle_w}
\]
\[J_{w_c} = (1 - \alpha)G_w E_{w_c}/\langle K_{out} \rangle_w + \alpha G_w N_c \]
\[J_{c_w} = (1 - \alpha)G_c E_{c_w}/\langle K_{out} \rangle_c + \alpha G_c N_c \]

\[E^*_c = E_{c_w}(1 - \alpha) + N_c\langle K_{out} \rangle_c \alpha \]
\[E^*_w = E_{w_c}(1 - \alpha) + N_c\langle K_{out} \rangle_w \alpha \]

\[\frac{G_c}{G_w} = \frac{E^*_w}{E^*_c} \cdot \frac{\langle K_{out} \rangle_c}{\langle K_{out} \rangle_w} \]
Analysis

- Derived for $\alpha = 0$
- Uses a strong mean field approximation that nodes that send current to and from the community have average G_i for the outside world ($G_w = 1$) and community (G_c)
- In a true community both E_{cw} and E_{wc} are smaller than in randomized network but the effect depends on the competition between them
$\alpha = 0.15$
Networks with artificial communities

- To test we generate a scale-free network with an artificial community of N_c pre-selected nodes.
- Use Metropolis Algorithm with $H=-(\text{# of intra-community nodes})$ and some inverse temperature β.
- Detailed balance: $E_{cw}E_{wc} = E_{cc}E_{ww}e^{-\beta}$.
Modules in networks and how to detect them using the Random walks/diffusion

What is a module?

- Nodes in a given module (or community group or functional unit) tend to connect with other nodes in the same module
 - Biology: proteins of the same function or sub-cellular localization
 - WWW – websites on a common topic
 - Internet – geography or organization (e.g. military)
Do you see any modules here?
Random walkers on a network

- Study the behavior of many virtual random walkers on a network.
- At each time step each random walker steps on a randomly selected neighbor.
- They equilibrate to a steady state $n_i \sim k_i$ (solid state physics: $n_i = \text{const}$).
- Slow modes allow to detect modules and extreme edges.
Matrix formalism

\[n_i(t + 1) = \sum_j \hat{T}_{ij} n_j(t) \]

\[\hat{T}_{ij} = \begin{cases}
1 / K_j & \text{if } j \leftrightarrow i \\
0 & \text{otherwise}
\end{cases} \]
Eigenvectors of the transfer matrix T_{ij}

$$\lambda^{(\alpha)} v_i^{(\alpha)} = \sum_j \hat{T}_{ij} v_j^{(\alpha)}$$

$$n_i(t) = \left(\lambda^{(\alpha)} \right)^t v_i^{(\alpha)}$$

$$-1 \leq \lambda^{(\alpha)} \leq 1$$
<table>
<thead>
<tr>
<th></th>
<th>Similarity</th>
<th>Country Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.9626</td>
<td>RU RU RU RU RU CA RU RU ?? ?? US US US US ?? (US Department of Defence)</td>
</tr>
<tr>
<td>3</td>
<td>0.9561</td>
<td>?? FR FR FR ?? FR ?? RU RU RU ?? ?? RU ??</td>
</tr>
<tr>
<td>4</td>
<td>0.9523</td>
<td>US ?? US ?? ?? ?? ?? ?? ?? ?? ?? ?? (US Navy) NZ NZ NZ NZ NZ NZ NZ NZ</td>
</tr>
</tbody>
</table>

components of the third e.v.: $c_{i}^{(3)}$

components of the second e.v.: $c_{i}^{(2)}$

Hacked site

- All
- Russia
- France
- US